
По оценкам недавнего исследования, проведенного компанией Forrester, только в этом году 10% рабочих мест в США будут автоматизированы. Другое исследование, проведенное компанией McKinsey, показывает, что в течение ближайших 10 лет будет автоматизировано около половины всех рабочих мест в США.
Машины займутся повторяющейся и монотонной работой, такой как расшифровка рентгеновских снимков (роль рентгенологов может вскоре значительно сократиться), вождение грузовиков и обслуживание складских помещений. Много было написано о том, какого рода работа исчезнет, однако существует еще одна не столь подробно изученная сторона проблемы: какие задачи будут выполнять машины в тех специальностях, которые уцелеют.
Рассмотрим работу врача-терапевта. Понятно, что диагностику болезней машины скоро будут выполнять лучше, чем люди (если уже не выполняют). Машинное обучение удивительно эффективно при наличии наборов данных для обучения и тестирования, что как раз применимо к здравоохранению. Однако варианты лечения нужно обсудить с пациентом и его семьей – эта функция вряд ли будет автоматизирована в обозримом будущем.
Теперь представим совершенно другую работу – бариста. В Сан-Франциско Cafe X заменило всех сотрудников роботами-манипуляторами, которые за приготовлением горячих напитков развлекают посетителей своими забавными жестами. Однако даже в Cafe X работает живой человек, который показывает клиентам, как пользоваться роботами для заказа напитков, и решает проблемы, возникающие у автоматических бариста.
Теперь сравним работу бариста и бармена. Люди часто заводят с барменом разговор. Для этой работы требуется гораздо больше, чем умение смешивать напитки. Как и в случае врача, эту работу легко разделить на две составляющие: повторяющаяся и монотонная (смешивание и подача напитков) и более интерактивная, непредсказуемая, предполагающая умение слушать клиентов и говорить с ними.
Если оценить характеристики многочисленных специальностей и профессий, можно выделить два типа нетривиальных задач, которые наиболее распространены и с трудом поддаются автоматизации.
1. Работа, связанная с эмоциями. Эмоции играют важную роль в человеческих коммуникациях (вспомните врача, разговаривающего с семьей, или бармена, взаимодействующего с клиентами). Они участвуют буквально во всех формах невербальных коммуникаций и эмпатии. Но более того, они помогают ранжировать действия по важности – например, решать, чем заняться прямо сейчас, а что отложить на вечер. Эмоции не только отличаются сложностью и нюансами, но и связаны со множеством процессов принятия решений. Работа эмоций плохо поддается научному пониманию (хотя в этой области наблюдается прогресс), и ее трудно встроить в автоматизированную систему.
2. Контекст. Люди могут с легкостью учитывать контекст при принятии решений или взаимодействии с другими людьми. Контекст особенно интересен, так как имеет множество вариантов, например, каждый выпуск новостей меняет контекст (широкий или узкий), в котором мы действуем. Кроме того, изменения контекста (например, победа независимого кандидата на президентских выборах) могут не только повлиять на взаимосвязи между факторами, но и добавить новые факторы и принципиальным образом переиначить их расклад. Это проблема для машинного обучения, работающего на наборах данных, которые по определению были созданы раньше, в другом контексте. Таким образом, принятие во внимание контекста (что без труда может сделать хороший бармен) представляет проблему для машины.
Наши способности управлять и руководствоваться эмоциями и учитывать влияние контекста очень важны для критического мышления, творческого решения проблем, эффективных коммуникаций, адаптивного обучения и здравого смысла. Очень сложно программировать машины, чтобы они воспроизводили подобные человеческие знания и навыки, и пока не ясно, когда предпринимаемые сегодня первые попытки это сделать принесут результат (и принесут ли вообще).
И на самом деле именно эти навыки постоянно требуются от кандидатов на различные должности в компаниях разных отраслей. Например, в одном из опросов 93% работодателей сообщили, что «способность кандидата критически мыслить, четко излагать и решать сложные задачи важнее, чем предмет, на котором он специализировался в университете». Кроме того, компании ищут кандидатов, обладающих такими навыками, как способность адаптивно учиться, принимать разумные решения, сотрудничать и ладить с другими. Со всем этим отлично справляется человек, но это будет сложно автоматизировать.
Все это означает, что образовательные системы должны концентрироваться не просто на способах взаимодействия людей и технологий (например, обучении студентов программированию), но и на том, что технологии не смогут освоить в ближайшем будущем. Это новый подход к характеристике природы социально-психологических навыков (soft skills): их сложнее всего понять и систематизировать и они дают людям – и будут продолжать давать – преимущество перед роботами.
Об авторе: Стивен Косслин – президент Foundry College, ранее директор по академическим вопросам Minerva Schools при KGI. Прежде декан факультета общественных наук Гарвардского университета.
Читайте также
Чем сервисы, подобные Uber, полезны белым воротничкам
«Газпром нефть» придумала занятие для участников конкурса «Лидеры России»
Кандидат и работодатель: чьи карты сильнее